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INVESTIGATION OF HEAT TRANSFER AND FLUID FRICTION IN A VISCOUS
GRAVITATIONAL FLOW OF WATER IN A HORIZONTAL TUBE AT qy = const
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Results of an experimental investigation of local and mean heat trans-
fer and fluid friction are given. It is shown that the heat transfer and
fluid friction coefficients in the viscous gravitational regime depend
on the heat supply law.

At present there are no reliable data for calculat-
ing heat transfer and fluid friction in viscous gravita-
tional flows in horizontal tubes at constant qy. The
experimental investigations, known to the authors,
that deal with processes in the above flows have gen-
erally been carried out at or near constant tube wall
temperature [1-3]. The paper by Id [4] is an ex-
ception, but the calculations recommended there
can scarcely be used because of the great scatter of
the experimental data and the absence of limits of var-
iation of the governing parameters,

Our tests were done on a horizontal 1IKh18N9T steel
tube of internal diameter 9,6 mm and wall thickness
0.5 mm. The heat supply at gy = const was provided

by passing an alternating electric current directly along

the tube over a section of 120 diameters, 16 diameters
from the tube entrance and exit. Static pressure taps
were provided over a length of 130 diameters.

Viscous regime. In order to obtain a more reliable
figure for the influence of free convection, relations
were obtained on the same equipment for heat transfer
and resistance coefficients at the minimum possible
heat flux (from the viewpoint of reliable measurement),
as well as for the resistance coefficient in isothermal
laminar flow, in other words, in conditions close to
the viscous regime.

The heat transfer averaged over the length from
these experiments may be approximated to within an
error of 6.5% by the formula

Nu — 1.64 (Re Pra/L)™ (uz/uy)” .

The reference temperature is the mean liquid temper-
ature along the length. In the factor (uj/uy)* we chose
n = 1/3 as giving the best grouping of the points, and
the constant factor is reduced somewhat (to 1.64) as
compared with n = 0,14, as recommended by Seider
and Tate [5], and also with n=0.125to 0.17, as rec-
ommended by Petukhov et al. [6]. This factor gener-
ally has no great influence in the viscous gravitation-
al regime, since as the heat flux increases free con~
vection plays a decisive role.

Calculation according to [1] gives results 6% great-
er than for Petukhov's formula [6], and 13% less than
for Seider and Tate's [5].

The local heat transfer data were reduced for the
six sections: x/d =8, 13, 24, 42, 65, and 106, The

results show good agreement with the formuls of Fil-
imonov and Khrustalev [7],

Nu, (Pry/Pry)) = 4.36 + 0.36 X "°.107%, (1)
where

i x/d
0.8 -
Reip Prig

Here all the quantities with subscript x are referred
to the liquid temperature at section x, Pry to Ty,
and Rejp and Prj, to the liquid temperature at the en-
trance.

The experimental results to determine the mean
resistance coefficient were corrected for lack of hy-
draulic stabilization as recommended by Filimonov
and Khrustalev, and are then described satisfactorily
by the relation

£ = (64/Re) (/g )™

The Reynolds number was calculated in ferms of the
mean liquid temperature along the length.

Viscous gravitational regime. Three series of ex-
periments were conducted, with fixed Reiy = 840,
1170, 1600 and variable heat flux.

It can be seen from Fig. 1 that the character of the
wall temperature distribution depends strongly on the
heat loading, whose influence we shall evaluate in
terms of the group

GriPr = gB:fq V\icp = gﬁéii;{cﬂq .
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Thus, with Gr#Pr = 5.25-10° a decrease in heat transfer
coefficient along the tube is apparent, and there must
also be one in the stabilizing section, With GréPr =
— 2.6.10" however, the situation is reversed, since the
convective flux increases along the tube and leads to
increasingly strong mixing of the liquid in the form of
double spiral flow,

Tigure 2 shows the resuits of local heat transfer
experiments, expressed as the ratio of the measured
value of Nug to that determined from (1) as g — 0.
The heat flux varied in the range

g =476-10°—57.10* w/m’.

The experimental results break down independently
of Pe(x/d) into three regions, and are well described
by the equation

Nity/Nuy o = C (Gr#Pr)r, @)
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Fig, 1. Variat.on in temperature T, °C, of the wall (1) and
of the liquid (2), along the tube (Rejp = i150): 1) with Gr*Pr=
=5.25 - 10% 2) 8.5 - 108 3) 1.3 - 10%; 4) 2.6 - 107,
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Fig. 2. Local heat transfer in the viscous gravitational
regime: a) when x/d = 26; b) 43; ¢) 61; d) 78; ¢) 96; f)

106.
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Fig. 3. Mecan heat transfer coefficient (1) and resistance

coefficient (2)1i/n the viscous gravitational regime (A =

= Nu/(Ped/L)Y¥; B = tRe/(uy/pp)’*): a) with Pe d/1 =
= 57.5; b) 90; ¢) 127.5.
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where

C=1, n=0when Gr*Pr<4.10?,
C =028, n=0.1when 4-10° < Gr*Pr < 107,
€ =0.000465, n = 0.5 when 107 < Gr*Pr < 3.10".

The governing temperature is the mean for the lig-
uid at the given section. It is pertinent to stress that
in the range of heat fluxes examined the relation be-
tween both the local and the mean heat transfer coef-
ficients and the group Pe(x/d) is independent of the
value of the heat flux, and remains the same as in the
viscous flow regime. This permits us to allow for the
influence of heat loading by introducing only the group
Gr*Pr into the calculation formulas for the viscous
regime, )

Figure 3 shows the experimental results for mean
heat transfer, which also fall into three regions and
may be described by the formula

Nu = 1.64 (Pe d/L)*[Cy (Gr*Pryr], (3)
where )
‘ Cy=1, n=0when Gr*Pr< 2.10%,

Cy =0.293; n=10.1when 2.10° < Gr*Pr < 107,
Cy =0.000464, n =0.5 when 107 < Gr*Pr< 3.107,

and the governing temperature is the mean of the lig-
uid along the length.

Introduction of the factor (ul/,uw,)i/ 3 into (3) leads
to considerable scatter of the points when Gr#Pr > 2.10°
and. reduces the scatter when Gr*Pr < 2.10°.

Figure 4 shows our results reduced according to
the Petukhov method [1], the continuous line indicat-
ing the relation obtained by Petukhov with Ty, = const.
In this method @ = Q/F(Ty, — Tp)in. It may be seen
from the figure that, other conditions being equal, the
mean heat transfer for the case gy = const is greater
than for the case Ty, = const, if Gr*Pr < 3-10°. When
Gr#*Pr > 3.10° the influence of the different means of
heating does not appear and the heat outputs coincide.

The organization of the heat supply has a decisive
influence on the variation of heat flux along the chan-
nel. Evidently, when heat is supplied according to the
Ty = const law, the greatest heat flux and tempera-
ture head occur at the beginning of the heated section,

105

i.e., in conditions in which the thermal boundary lay-
er begins to form, The local heat transfer coefficients
are large there even without this, and there is there-
fore no basis for expecting a noticeable influence of
free convection on the flow temperature field, espe-
cially since the influence of a field with temperature
gradient is confined to the region of the thin annular
thermal boundary layer, As the distance from the be-
ginning of the heater increases, there is a sharp drop
in the temperature difference between wall and liquid,
and the free convection flux is reduced. Heat flux at
Tyw = const is therefore unfavorable from the viewpoint
of development of free convection flow along the chan-
nel.

The picture is different with heat supply according
to the law gy, = const, when the free convection flux
increases with distance from the beginning of the heat-
er, i.e,, it increases in the same direction in which
a sharp decrease in heat transfer coefficient is ob-
served to result from stabilization of the thermal .
boundary layer in the viscous regime. It may be seen
from Fig. 1 that at large heat fluxes the total influence
of free convection increasing along the tube leads to a
result that is directly at variance with the usual pic-
ture of variation of local heat transfer coefficient in
the viscous regime: when gy = const the local heat
transfer coefficient increases with distance from the
beginning of the heater. v

Thus, the difference of the loeal heat transfer co-
efficients for Ty = const and gy = const, other condi-
tions being equal (identical mean heat flux density,
identical distance from the beginning of the heated
section, etc.), results mainly from the different lo-
cal hydrodynamic conditions, since the variation of
the local group Gr*Pr along the tube length is differ-
ent in the two cases, and may even be in the opposite
sense,

A matter of independent interest is the local heat
transfer coefficient with different conditions of heat
supply, but with the same values of Gr¥Pr at a given
section, and, of course, with the other conditions:

Re the same, x/d the same, etc, Unfortunately, we
have no experimental data available on local heat trans-
fer coefficients with Ty = const; we are therefore lim-
ited to qualitative considerations.
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Fig. 4. Mean heat transfer coefficient in the vigcous gravi-
tational regime for various methods of heat supply. Contin~
uous line—according to [1] (A = Nu/0.35 x (Pe d/L)}; ¢):

a) Pep, = 6000; b) 9000; ¢) 13 000,
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From the theoretical solutions for heat transfer in
laminar flow in a channel in the absence of free con-
vection, it is known that the temperature profile in
the case qw = const is fuller than for Ty, = const.

If therefore convective fluxes have not been gener-
ated, then for an equal increase in local temperature
head, i.e., for equal local values of Gr*Pr, they ap-
pear earlier for q,, = const, than for T, = const,
since the temperature gradient at the wall is greater
in the first case.

In the case when the viscous gravitational regime
has already been developed, and under heating with
Tw = const, the group Gr*Pr decreases along the chan-
nel, while with gy = const it is approximately constant
(in the case of gases it decreases slowly, and for lig-
uids it increases because of change of u).

Therefore, the equality of local values of Gr*Pr at
any section of the tube, under different heat supply
laws, cannot mean equality of heat transfer at that
section, since convective flow at a given place depends
on its prehistory, and the nature of variation of local
values of Gr*Pr is determined by the heat supply law
as well as the temperature field in the absence of natu-
ral convection,

Therefore, local heat transfer in the viscous gravi-
tational regime depends appreciably on the law of heat
supply along the channel. For example, for equal lo-
cal Gr*Pr at Ty, = const, the influence of natural con-
vection on heat transfer must be greater than at gy =
= const, since the values of Gr*Pr upstream will be
greater in the first case, and less in the second, This
mcans that even the convective fluxes develop to a
greater extent at Ty, = const,

Figure 3 shows results of cx¥periments to determine
the mean resistance coefficient at differept heat load-
ings. These results are well described by the formula

£ = (64:Re) (i) (Co (CrePryy, )
where

C, 1.

n =0 when Gr#Pr < 2. 108,
C, == 0.415, n = 0.07 when 2.10° < Gr*Pr < 107,
C,=0.002, n=0.4when 10° <« Gr*Pr < 3.10%.
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Here the governing temperature is the mean liquid
temperature along the length.

NOTATION:

_q—heat flux density at wall; T, —temperature of tube wall; Nu =
= ad/A—mean Nusselt number along length; c—mean heat transfer
coefficient, referred to temperature difference t,, — t;: ty and t; —
mean integral wall temperature along length, and arithmetic mean
liquid temperature along length, respectively; Nux = axd/A\—local
Nusselt number; ax—local heat transfer coefficient, referred to "wall-
liquid” temperature head at section x; Re, Rejp—Reynolds number at
governing mean liquid temperature and liquid temperature at tube
entrance; Pr, Pr, Prjp—Prandtl number at governing mean liquid
temperature, liquid temperature at section x, and liquid temperature
at tube entrance, respectively; Gr*—Grashof number, expressed in
terms of heat flux density; Gr—Grashof number, expressed in terms
of mean “wall-liquid" temperature head; Q—heat flux (W); F—inter-
nal surface area of heated section of tube; Pep—Peclet number at

temperature ot boundary layer t, = (t,, + t;)/2.
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